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Abstract, In the case of quantum field theory at finite temperature we investigate the thermal
Euclidean Green function for massive twisted scalar fields in the spacetime of an infinite
straight cosmic string. Then taking the limit. when mass goes to zero, we obtain the integral
form of the mean-square field as a function of temperature.

Grand wunified cosmic strings have been treated with great interest during the past few
years. They have astrophysical importance because loops of string provide the seeds for
the process of galaxies formation. They could also act as gravitational lenses, doubling
the images of quasars. After the detection of anisotropies in the cosmic microwave
background radiation it seemed that these anisotropies may be caused by fast-moving
long strings [1].

The spacetime generated by an infinite straight cosmic string is conical in the outside
region and the metric is given by [2]

dsz=—dr2+dr2+ﬁzd92+dz2 ¢))
p

where p~'=1-4Gu <1. We redefine the coordinate §=8/p, so that & takes values
from zero to 2z /p.

It was pointed out [3] that, in addition to the existing standard type of fields, which
can be regarded as the cross-section of a trivial bundle, there should also be so-called
twisted fields corresponding to the cross-section of a non-trivial vector bundle. Several
works have been devoted to the problem of twisted scalar fields in various kinds of
spaoetnnes [4].

The aim of this letter is to determine the Euclidean thermal Green function for
massive twisted scalar fields in the spacetime of a cosmic siring. Setting the mass equal
to zero, we obtain the thermal average.

Several authors have dealt with the problem of two—point functions [5]. In our
consideration we apply the method used in [6, 7]. By this prescription we acquire the
following Green function for twisted scalar fields conformally coupled to gravitation:

Gp(x, x')= {0l (x}¢ (x)|0>
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where J,(x) is 2 Bessel function, Ky is a modified Bessel function, M stands for the
mass of the scalar field, &={(z—z)*—(t—¢)>. Using the integral representation of
Ko[(K?*+ M?)'/2£] and performing integration with respect to K [8] we obtain

an é m=—co

2rr’ ek _Mzgz)
x( 2 )e@( 2z T ) )

o
i+ 1/2(8-9) J At Lpms 12
0

To attain the integral form of the above equation we have to use an integral represen-
tation of I,(x) [8]. After lengthy algebra one obtains the following expression, which
will be necessary in our further considerations:

Z exp(i(m+1/2)¢—plm+ 1/2[x) sin( pa[m+1/2})

sin(pn ;' ‘i”) sin(pn.; ¢)
= cosh(px/2) o —cost Pt 9)  cosh(pm)—cos(pr—9) @

where ¢= ¢ — ¢". For brevity, we denote expressions in brackets in equation (4), respec-
tively, by F(¢,) and F(¢..). Making use of the following identity:

1 Z e:(mH/ZWcos(p|m+1/2|°')__|: (G_£)+5(G+£):| ®
275,"-—00 p ? i

carrying out summation with respect to m, replacmg tby —11: and integrating we finally
reach the form of Euclidean Green function:

K (MDY F(p+)t F¢-)) (6)

Geplx, XY= 1 Kl (Md) - I M cosl;( x/2)

where
Er=(z—zY+(z—1)*
d=[r+r*—2rr cos(¢/p) + &'/
D=(r+r%+2r cosh(x) + EH2

Having the Euclidean Green function in the form (€) and with the aid of the Laplace
inverse transformation [9] we can determine the Euclidean heat kernel as follows:

Ke(x, ¥, §)=—— ! ex (—éi—Mz)
P %) e P

~l6n £ ¥ I dx cosh(px/2)[F(¢+ + F(¢-)] exp(—g"— Ms ) M
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It turns out that for ultrastatic metrics [10] the thermal heat kernel may be factorized
as follows:

iB(z—7) if?

43 4755‘) KE(x! x’: S)! B (8)

KET= 93(

where §=1/kT, k is the Boltzmann constant, T denotes temperature and 8:(x|u) is
the theta function [11]. Using the formula in the Schwinger-DeWitt formalism, one
can write the Euclidean thermal Green function in the form:

Ger(x, x',5)= J. N ds Ker(x, X', 5). )]
0

Following the procedure presented by Linet [9], i.e. changing the variables of integration
and setting M'=0 to get ‘a more practical form’, we have

=] i 2 2
G¥r%x, x) =$ J de 93(% (r— r’)]im) exp(ul% dzt) dr
L]

+ ;’ﬁz Lm dx Lm dr es(f (z— r’)ﬂim) cosh(px/2)
507
% [F(¢+ + F(¢p-)] exp —FD £ (10)
Bvaluating the #-integral [10] one obtaing
siuh(zz—fE 5 )
G (5, ) =— d
4zpé [cosh(gg— ) )— c:os(:%lr (t— r’)):|
| . '(Zn )
w cosh( px/2) sinh| — A
P
d )+ Flo- 11
Ty J * [cosh(zi A)_COS(Z_” = f')ﬂ [F(g)+F(g] (1)
B B
where |

8 =(z—z' V¥ +r+rt—2rr cos(¢/p)
A*=(z—2Y*+ 7+ r*+2rr cosh(x).

Tt is interesting to evaluate the thermal average

(Pe)p=lm [G’g:"(x, *) —ﬁ] (12)
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Taking into account equations (11) and (12) and the asymptotic behaviour of
t-integration [9]
sinh 24 N 1
a(cosh a—cos 2k) i +d°

as &, a—{ we obtain

+1/3

2z .
- M w® " coth[? ] cosh(x/2)] cosh{ px/2)

(s =1/125 An*58 0 cosh(x/2){cosh( px) —cos(px)] (13)
When the temperature goes to zero, i.e. f—c0 we have
2 __psin(pr/2) 7 cosh(px/2) o
NAR2 8x*8% 0 x cosh(x/2)*[cosh{ px) — cos(pr)] (14
On the contrary when f—0 the limit is
(P 12p2 LI |7 o, oS /2) as)

4*5p ),  cosh(px/2)[cosh(px)—cos(pm)]

We obtain an integral form for the mean-square field as an integral function dependent
on temperature. Besides the well known part {@’(x))s, it consists of the integral part
which is responsible for the geometry of the problem under consideration.
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