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LETTER TO THE EDITOR 
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cosmic string-thermal effects 
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Skiodowskiej 1, Poland 

Received 3 June 1993 

AbsLract. In the case of quantum field theory at finite temperature we investigate the thermal 
Euclidean Green function for massive twisted scalar fields in the spacetime of an infinite 
straight cosmic striug. Then taking the limit. when m a s  goes to zero, we obtain the integral 
form of the meanquare field as a function of temperature. 

Grand unified cosmic strings have been treated with great interest during the past few 
years. They have astrophysical importance because loops of string provide the seeds for 
the process of galaxies formation. They could also act as gravitational lenses, doubling 
the images of quasars. After the detection of anisotropies in the cosmic microwave 
background radiation it seemed that these anisotropies may be caused by fast-moving 
long strings [I]. 

The spacetime generated by an infinite straight cosmic string is conical in the outside 
region and the metric is given by [2] 

(1) 
3 d?=-dF + d?+, deZ + dz2 
P 

where p-'= 1 -4Gp < 1. We redefine the coordinate e= e/p, so that e takes values 
from zero to 2z /p .  

It was pointed out [3] that, in addition to the existing standard type of fields, which 
can be regarded as the cross-section of a trivial bundle, there should also be so-called 
twisted fields corresponding to the cross-section of a non-trivial vector bundle. Several 
works have been devoted to the problem of twisted scalar fields in various kinds of 
spacetimes 141. 

The aim of this letter is to determine the Euclidean thermal Green function for 
massive twisted scalar fields in the spacetime of a cosmic string. Setting the mass equal 
to zero, we obtain the thermal average. 

Several authors have dealt with the problem of two-point functions 151. In our 
consideration we apply the method used in [6,7]. By this prescription we acquire the 
following Green function for twisted scalar fields conformally coupled to gravitation: 

. 

Gp(x, ~')=<014(~)4(~')10> 
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where J&) is a Bessel function, & is a modified Bessel function, M stands for the 
mass of the scalar field, 52=(z-z')2-(t-t ' )2.  Using the integral representation of 
K0[(K2+M2)1'25] and performing integration with respect to K [8] we obtain 

To attain the integral form of the above equation we have to use an integral represen- 
tation of IJx) [8]. After lengthy algebra one obtains the following expression, which 
will be necessary in our further considerations: 

m 

m=-m 
exp(i(m+ 1/2)@-plm+ 1/21x) sin(pn[m+ 1/21) 

sin??) 
+ 

cosh(px)-cos(pn++ ) cosh(px)-cos(pn-+ ) 
= cosh(px/2) 

where += 0 - 8'. For brevity, we denote expressions in brackets in equation (4), respeo 
tively, by F(++) and F(@-). Making use of the following identity: 

carrying out summation with respect to m, replacing t by -ir and integrating we finally 
reach the form of Euclidean Green function: 

where 

5'= (2 -z')Z+ (r - Z?* 

d= [? + J2 - 2rJ cos(+/p) + r]"' 
D=(?+r'2+2rJ cosh(x)+f2)"2. 

Having the Euclidean Green function in the form (6) and with the aid of the Laplace 
inverse transfonnation [9] we can determine the Euclidean heat kernel as follows: 

Kdx, x', s) =- 

aXcosh(px/2)[F(+++F(@-)] exp ---M2s . (7) I 



Letter to the Editor L779 

It turns out that for ultrastatic metrics [IO] the thermal heat kernel may be factorized 
as follows : 

where p =  l/kT, k is the Boltzmann , p u t a n t ,  T denotes temperature and 03(xlp) is 
the theta function [ll]. Using the formula in the Schwinger-DeWitt formalism, one 
can write the Euclidean thermal Green function in the form: 

GET(x, x’, S) = ds &AX, x’, s). (9) 
JOm 

Following the procedure presented by Linet [9],  i.e. changing the variables of integration 
and setting M=O to get ‘a more practical form’, we have 

Evaluating the t-integral [lo] one obtains 

m cosh(px/2) sinhi $ A) 

LT&)+F(4-)1 (11) 
P +- 

4rrzpAj0 dx [cosh( A) -cos( 7 (5 - r ) ) ]  

where 

6’=(z -2’)’ +r2+  r‘2- 2rr‘ cos(&/p) 

A’ = (2-2‘)’ + ?+ JZ+2rJ  cosh(x). 

It is interesting to evaluate the thermal average 

G&=’(x, x’)-- 
4rr‘d2 ‘ I  ‘ 
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Taking into account equations (11) and (12) and the asymptotic behaviour of 
t-integration [9] 

=- +1/3 
sinh 2a 

a(cosh a- COS UC) 2 fa’ 

as k, a40 we obtain 

(13) cosh(x/2)[cosh(px) -cos(pn)] ’ 

When the temperature goes to zero, i.e. p-a, we have 

, . ,. ,....., ....., , , , , , , . , (14) 
P sin(gn/2) JOm dx cosh(px/2) 

8ff362 cosh(x/2)2[cosh(px) - cos(px)] ’ <P2(.)>m = - 
On the contrary when p-0 the limit is 

, ,.. (15) 
cosh(px/2) 

cosh(px/2)[cosh(px) - cos(pn)l;” 

We obtain an integral form for the mean-square field as an integral function dependent 
on temperature. Besides the well known part <q2(x)>p, it consists of the integral part 
which is responsible for the geometry of the problem under consideration. 
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